Water quality on time scales from hours to decades: diurnal cycles, fractal spectra, non-selfaveraging, and challenges for trend detection

> James Kirchner ETH Zürich Swiss Federal Research Institute WSL University of California, Berkeley

Plynlimon hydrochemical data set, unique worldwide:

- Precipitation and stream flow
- two small catchments in Wales
- sampled every 7 hours for 1-2 years
- analyzed for ~everything (present at ≥ ppt)
 45 analytes from H⁺ to U
- 24-30 years of weekly analyses are also available (same analytes and same sites)

<u>The guy who made</u> <u>it happen:</u> *Colin Neal Centre for Ecology and Hydrology, UK*

Every 7 hours for a year (*half* of the high-freq. record)

Every 7 days for a decade (<u>1/2-1/3</u> of the long-term record)

High-frequency sampling reveals interesting dynamics!

During low-flow periods: daily cycles in ~32 elements (out of 45!).

Almost no diurnal cycle in streamflow (very humid site, ET is only ~20% of water balance).

How do we characterize the amplitude and phase of a (time-varying) 24-hour cycle, sampled at 7hour intervals?

Concentrations vs. hour show no clear pattern...

Concentrations vs. hour show no clear pattern...

but <u>derivatives</u> vs. hour show <u>clear cycle</u>

Fit the amplitude and phase of 24-hr and 12-hr cycles (1st and 2nd harmonics) of <u>derivatives</u>, then <u>transform</u> result back into concentration space.

Robust fit obtained by *<u>Iteratively Reweighted</u></u> <u>Least Squares</u> (follows the bulk of the data and minimizes the influence of outliers).*

Diurnal cycles are ~ 0.4% - 4% of mean

Diurnal cycles vary with flow, and migrate downstream

Diurnal NO₃ cycles by <u>discharge</u> <u>deciles</u>

(lowest 10%, next 10%, etc.)

Amplitude
 inversely
 proportional to
 discharge

Phaseconstant

Diurnal Fe cycles by <u>discharge</u> <u>deciles</u>

(lowest 10%, next 10%, etc.)

• Amplitude increases, then declines, with discharge

Phaseconstant

Amplitudes of diurnal cycles: no systematic difference between upper and lower sites

Phases of diurnal cycles: lower site lags upper site by ~ 3 hours

Phases of daily cycles: landscape chromatography?

Time series for three metals

Spectra for three metals (all approximately 1/f)

Weekly and 7-hour spectra combined, for selected analytes:

Fractal scaling from hours to decades

(Gray lines are ideal 1/f spectra)

Vertical lines show annual and daily cycles

> Stream discharge does <u>not</u> follow
> 1/f scaling

Kirchner and Neal, PNAS (2013)

Contrasts between catchments:

<u> Plynlimon, Wales</u>	Kervidy-Naizin, France
Moorland & forest	Intensive agriculture
~1 mg/L NO ₃	~75 mg/L NO ₃
~2500 mm/yr	~800 mm/yr
Weak (ET~20%)	Strong (ET~60%)
Steep (slopes~20%)	Gentle (slopes~5%)

Land use:

Precipitation: Seasonality: Topography:

Kervidy-Naizin catchment, Brittany, France: 3 years of daily chemical sampling

0 - 2		ر دیارش بهاره ا				precip]
0 - 0.8	-	<u></u>	Mu	"hu_	ببنار .	Q
9903 - 23780	- ••••••••••••••••••••••••••••••••••••	┉┉╋╌╌┉╌┪╌┉┉	. പ്രൂഷ്യം പ്രംപ്പാം പ	140.000	. erable en ange	Na
481 - 23030	- 		. un	مان ریان م		K
1.1 - 13	- 		. Lleubergen	فالاستعارية والمستحد	y in Munerman	Rb
6394 - 17836	,	استهليك وسرار	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	14	. Summer and	Mg
7287 - 23240	- ·		. phillippingapor	l I	- ^م امعة ميلية ليما ا	Ca
43.3 - 114	_ _ _	ا مەملىمىيەلىيەر ا	· ‹‹~›››››››››››››››››››››››››››››››››››		يەم مىلىم مەسىيەت. ا	Śr
8.1 - 31.3	- - •••,		· ····		•••••••••••••••	Ba
0.2 - 1652	- <u> </u>				4 	AI
0.2 - 2.8		handelawar	. mul	whether the second second	- Marth - married	Cr
1.7 - 93.9	Water when	with	. Munnehad	here hy me	مدرار مارار مار	Mn
32.8 - 1348	- 	LAMA.	. Muleman	wave. M	e - mart martine	Fe
0.55 - 20.3			. whitemanne	and a company of the	+ march	Cu
6.1 - 82.9			. بىلىمىمىلىمىسىم		million	Zn
0.011 - 0.44	- - •	~~~ <u>~~~~~</u>	. Uhumanaan	h	- w John -	Cd
0 - 2.3	- -	Locania			المرال	Pb
, vog	, ₁₀₀	, ,000	'oon	, oor	1002	
01/09/.	0110311	0110911	J110315	0110911	J110312	

2027 - 5411	Si
0.066 - 1.4	E Make aller when hope and in mound the
0.042 - 1.6	- inhappalan when have an and will be ce
0.018 - 0.45	E. what all and when have an man will be seen
0.082 - 1.8	- wheap alson whom has preased in meneral the end
0.014 - 0.33	Sm
0.002 - 0.062	E
0.012 - 0.22	E
4e ⁻⁴ - 0.024	E Make Aladay When have any manual the TD
0.055 - 0.12	F where also we will be some on an and will be some
7e ⁻⁴ - 0.024	Finishalperturing withombergeran in manual the Ho
0.003 - 0.065	F. Maker Alasen Whenhamper in in invertelle the enter
0 - 0.01	E
0.003 - 0.058	T. which when a when have me man and will the second
0 - 0.01	F which colours who many an an and the LU
0 - 0.15	t where he had not and will have a source will be used as
0.006 - 0.1	F where for the way with making the way is not work the way
, NO	39 200 200 200, 200, 200,
01/09/	011031. 011031. 011031. 011031. 011031.

Aubert et al., ES&T, 2014.

Kervidy-Naizin catchment, Brittany, France: approximate 1/f scaling across the periodic table (3 years of daily data)

Kervidy-Naizin catchment, Brittany, France: 12 years of daily data and 8 months of sonde data for NO3 and DOC

Kervidy-Naizin catchment, Brittany, France: spectra of NO3 and DOC, from 12 years to 40 minutes

Kervidy-Naizin catchment, Brittany, France: spectra of NO3 and DOC, from 12 years to 40 minutes

Kervidy-Naizin catchment, Brittany, France: spectra of NO3 and DOC, from 12 years to 40 minutes

7-hourly ¹⁸O and ²H are both (very) strongly damped in streamwater, compared to their variability in precipitation. Implication: recent rainfall is a minor component of streamflow.

A closer look reveals... richly detailed dynamics in streamwater isotopes

This is <u>not analytical noise</u>. Analytical noise is only ~1/3 of sample-to-sample variability (even at this sampling frequency), for both ²H and ¹⁸O.

Measurement noise is too low to affect measured spectra (... but you always need to check!)

Isotope power spectra (here, ²H) are broadly consistent with damping in CI spectrum (for which we have lots more data...)

Working Hypotheses:

Advection and (macro)dispersion of spatially distributed rainfall inputs, potentially including chemical retardation and/or irreversible kinetically limited immobilization

Working Hypotheses:

Spatially <u>correlated</u> white-noise reaction rates (with or without retardation)

Working Hypotheses:

"Anomalous" dispersion of spatially uncorrelated reaction rates

Implication: High-frequency (short-time) signals from most of the catchment *will not reach the stream*, but instead will be lost to dispersion/interference.

Thus streams are not "*mirrors* of the landscape", but rather <u>red-tinted filters</u> that transmit long wavelengths and filter out short ones.

Statistics (and our expectations) are based on time series like white noise, which are <u>self-</u> <u>averaging</u> (meaning: averages converge to a stable mean).

1/f time series are <u>not</u> self-averaging! Averages taken over longer and longer periods do <u>not</u> converge to a stable value (or do so very slowly)!

differences between averages (arbitrary log scale) RMS

Differences between successive averages of weekly and 7-hour data (averaged over intervals from 7 hours to \sim 5 years):

Yearly averages, a year apart, are as different as daily averages, a day apart!

RMS differences between averages (arbitrary log scale)

Implication: normal statistics (derived from the Central Limit Theorem) may give 'significant' but inconsistent long-term trends.

White noise: trend lines for individual time intervals are usually consistent with those for adjacent time intervals, within statistical confidence bounds (green curves).

1/f noise: trend lines for individual time intervals are <u>poor predictors</u> of trends in other time intervals (they lie far outside each others' confidence bounds). Fitting trends to longer time intervals <u>makes this problem worse</u>.

— Over 50% of all trends longer than ~2 months (7hr sampling) or ~5 years (weekly sampling) are statistically 'significant' ... at p<0.001!</p>

— ... but they are <u>poor</u> <u>predictors of future trends</u>

(>50% chance that the next interval's trend is significantly <u>different</u> ... also at p<0.001!

High-frequency sampling reveals close connections with streamflow dynamics

Diurnal cycles in many elements

Universal 1/f spectral scaling in water quality

Lack of self-averaging: a challenge for change/trend detection!

Convincing, but inconsistent, trends on all time scales

Complete data set *is publicly available* as a community resource for research and education

Neal et al., 2013, *Hydrological Processes* Kirchner and Neal, 2013, *PNAS*

With thanks to: Colin Neal Margaret Neal Mark Robinson Ken Blyth **Phil Rowland Darren Sleep Brian Reynolds** - and -The Plynlimon field staff

Phases of daily cycles: landscape chromatography?

High-frequency sampling reveals close connections with streamflow dynamics

Universal 1/f spectral scaling in water quality

Lack of self-averaging: a challenge for change/trend detection!

Convincing, but inconsistent, trends on all time scales

